A pr 1 99 6 Low frequency admittance of quantized Hall conductors
نویسندگان
چکیده
We present a current and charge conserving theory for the low frequency admittance of a two-dimensional electron gas connected to ideal metallic contacts and subject to a quantizing magnetic field. In the framework of the edge-channel picture, we calculate the admittance up to first order with respect to frequency. The transport coefficients in first order with respect to frequency, which are called emittances, determine the charge emitted into a contact of the sample or a gate in response to an oscillating voltage applied to a contact of the sample or a nearby gate. The emittances depend on the potential distribution inside the sample which is established in response to the oscillation of the potential at a contact. We show that the emittances can be related to the elements of an electro-chemical capacitance matrix which describes a (fictitious) geometry in which each edge channel is coupled to its own reservoir. The particular relation of the emittance matrix to this electro-chemical capacitance matrix depends strongly on the topology of the edge channels: We show that edge channels which connect different reservoirs contribute with a negative capacitance to the emittance. For example, while the emittance of a two-terminal Corbino disc is a capacitance, the emittance of a two-terminal quantum Hall bar is a negative capacitance. The geometry of the edge-channel arrangement in a many-terminal setup is reflected by symmetry properties of the emittance matrix. We investigate the effect of 1 voltage probes and calculate the longitudinal and the Hall resistances of an ideal four-terminal Hall bar for low frequencies.
منابع مشابه
Dynamic Conductance in Quantum Hall Systems
In the framework of the edge-channel picture and the scattering approach to conduction, we discuss the low frequency admittance of quantized Hall samples up to second order in frequency. The first-order term gives the leading order phase-shift between current and voltage and is associated with the displacement current. It is determined by the emittance which is a capacitance in a capacitive arr...
متن کاملField-induced spin-density-wave phases in TMTSF organic conductors: quantization versus non-quantization
We study the magnetic-field-induced spin-density-wave (FISDW) phases in TMTSF organic conductors in the framework of the quantized nesting model. In agreement with recent suggestions, we find that the SDW wave-vector Q deviates from its quantized value near the transition temperature Tc for all phases with quantum numbers N > 0. Deviations from quantization are more pronounced at low pressure a...
متن کاملSimulation of Single Conductors Galloping Oscillations and Estimation of their Maximum Amplitudes
Overhead transmission lines are influenced by different factors which are mostly electrical and mechanical. These factors can cause problems for lines, distortions in network and outage of line. In designing transmission lines mechanical properties are evaluated after selecting a suitable conductor and clearance with regard to electrical properties. In lines designing, an important mechanical p...
متن کاملSimulation of Single Conductors Galloping Oscillations and Estimation of their Maximum Amplitudes
Overhead transmission lines are influenced by different factors which are mostly electrical and mechanical. These factors can cause problems for lines, distortions in network and outage of line. In designing transmission lines mechanical properties are evaluated after selecting a suitable conductor and clearance with regard to electrical properties. In lines designing, an important mechanical p...
متن کاملTwo-dimensional transverse magnetic scattering using an exact surface admittance operator
This paper presents a new approach to solve two-dimensional transverse magnetic (TM) scattering problems involving homogeneous penetrable scatterers. The scatterers can be replaced by equivalent electric surface currents provided a proper surface admittance operator is introduced relating those currents to the electric fields on the scatterer’s surface. The surface operator for a scatterer with...
متن کامل